Spatial integration of optic flow signals in fly motion-sensitive neurons.

نویسنده

  • Peter Neri
چکیده

Neurons in the fly lobula plate integrate motion signals over large regions of visual space in a directionally selective manner. This study is concerned with the details of this integration process. We used a stimulus consisting of a 4 x 4 lattice of locally moving Gabor patches, in which each patch could take any direction independently. We also presented only one patch at a time or two patches at a time. Across all possible directions of motion, the firing rate response r1+2 to two simultaneously presented patches was well described by r1+2(d1, d2) = G x [r1(d1) + r2(d2)] + S, where r1 and r2 are responses to individual patches moving in directions d1 and d2, and G approximately 0.81, S approximately -23. However, this quasi-linear scaling expression failed to account for three main empirical observations: 1) the directional-tuning curve for one patch is broader in the presence of another patch moving in the neuron's preferred direction (PD); 2) the vertical compression of this curve is greater when the second patch moves in the antipreferred direction (AD) as opposed to PD; 3) the ability of the neuronal response to discriminate the direction of a patch is greater when the other patch is moving in the PD as opposed to AD, where this ability is assessed using both information theory and a standard discriminability index. To account for these departures from the simple scaling model, we used a normalization model very similar to one used for macaque area MT/V5. This model can qualitatively explain all three departures from the scaling equation described above, suggesting that a gain-control normalization network may be at work within the fly lobula plate.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Performance of fly visual interneurons during object fixation.

Neurons involved in the processing of optic flow are usually analyzed using stimuli designed by the experimenter. However, in real life optic flow depends on locomotive behavior. We characterized the performance of motion-sensitive neurons in the visual system of the fly using optic flow as occurring in behavioral situations during object fixation. Optic flow generated by tethered flying flies ...

متن کامل

Motion-form interactions beyond the motion integration level: evidence for interactions between orientation and optic flow signals.

Motion and form encoding are closely coupled in the visual system. A number of physiological studies have shown that neurons in the striate and extrastriate cortex (e.g., V1 and MT) are selective for motion direction parallel to their preferred orientation, but some neurons also respond to motion orthogonal to their preferred spatial orientation. Recent psychophysical research (Mather, Pavan, B...

متن کامل

Visuomotor Transformation in the Fly Gaze Stabilization System

For sensory signals to control an animal's behavior, they must first be transformed into a format appropriate for use by its motor systems. This fundamental problem is faced by all animals, including humans. Beyond simple reflexes, little is known about how such sensorimotor transformations take place. Here we describe how the outputs of a well-characterized population of fly visual interneuron...

متن کامل

Robustness of the tuning of fly visual interneurons to rotatory optic flow.

The sophisticated receptive field organization of motion-sensitive tangential cells in the visual system of the blowfly Calliphora vicina matches the structure of particular optic flow fields. Hypotheses on the tuning of particular tangential cells to rotatory self-motion are based on local motion measurements. So far, tangential cells have never been tested with global optic flow stimuli. Ther...

متن کامل

Spatial reference frames of visual, vestibular, and multimodal heading signals in the dorsal subdivision of the medial superior temporal area.

Heading perception is a complex task that generally requires the integration of visual and vestibular cues. This sensory integration is complicated by the fact that these two modalities encode motion in distinct spatial reference frames (visual, eye-centered; vestibular, head-centered). Visual and vestibular heading signals converge in the primate dorsal subdivision of the medial superior tempo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 95 3  شماره 

صفحات  -

تاریخ انتشار 2006